

Copper-Catalyzed Synthesis of Substituted Quinolines via C-N Coupling/Condensation from ortho-Acylanilines and Alkenyl Iodides

Lingkai Kong, Yuanyuan Zhou, He Huang, Yang Yang, Yuanyuan Liu,* and Yanzhong Li*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China

Supporting Information

ABSTRACT: An efficient cascade copper-catalyzed intermolecular Ullmann-type C-N coupling/enamine condensation reaction is described, in which ortho-acylanilines and alkenyl iodides converted to multisubstituted quinolines in good to excellent yields.

$$R^{1}$$
 R^{2} R^{3} R^{4} R^{1} R^{2} R^{3} R^{2} R^{2} R^{3} R^{4} R^{1} R^{2} R^{3} R^{4} R^{1} R^{2} R^{3} R^{3} R^{4} R^{1} R^{2} R^{3} R^{2} R^{3} R^{4} R^{5} R^{5

uinolines are widely found in natural products¹ and broadly used in medicinal chemistry, particularly as antiviral, anticancer, antituberculosis, and antimalarial agents.² Furthermore, quinolines as building blocks were applied to prepare functional materials with enhanced physical properties.3 The traditional methods for constructing quinolines include the Combes synthesis from anilines and 1,3-diketones, the Skraup synthesis from anilines and glycerins, and the Friedlander (Pfitzinger, Niementowski) synthesis from orthoacylanilines and α -methylene aldehydes/ketones.⁴ In recent years, new approaches based on transition-metal-catalyzed C-N/C-C bond formation attracted much attention due to mild reaction conditions and expanded substrate scope.⁵ Among them, ortho-substituted anilines as important starting materials have a special position in the synthesis of quinolines. In 2006, a novel cascade reaction of nickel-catalyzed Michael addition/ deiodination was developed by the Korivi group (Scheme 1, a). 5j In 2008, Weingarten and co-workers reported a two-step method from ortho-amino arylboronic acids via rhodiumcatalyzed conjugate addition and direct palladium-catalyzed borylation (Scheme 1, b).5g In the same year, a useful cascade synthesis of substituted 3-quinolinecarboxylic esters via ironcatalyzed benzylation/cyclization was achieved by the Wang group (Scheme 1, c). Sh During the course of our ongoing study on the development of transition-metal-mediated heterocycleforming protocols, 6 we have reported two methods for yielding 2,4- and 3,4-substituted quinolines from ortho-acylanilines and alkynones or alkynes catalyzed by Fe or Ag, respectively (Scheme 1, d,e).

Regarding the economy and easy-handle-system of coppercatalyzed C-N coupling, important breakthroughs with the discovery of versatile and very efficient new copper/ligand systems have led to a spectacular resurgence of interest in Ullmann-type reactions in the past decade.⁸ More recently, ligand-assisted copper-catalyzed modern versions of the Ullmann-Goldberg reactions between vinyl halides and amides have been developed.9 However, few reports focused on Nvinylation of amines, especially in which ortho-substituted anilines as the substrate only gave moderate yield. 10 The

Scheme 1. Metal-Catalyzed Synthesis of Quinolines from ortho-Substituted Anilines

2006, by Korivi group
$$R^{1} + R^{3} + R^{2} = R^{2} = R^{2} = R^{2} = R^{3} = R^{3} = R^{4} = R^{3} = R^{4} = R^{3} = R^{4} = R^{3} = R^{4} = R^{4}$$

difficulties might be caused by the bulky groups around the reactive site and unstable enamine products. We envisioned that if anilines bearing an ortho-substituted electrophilic group were employed, it might capture the reactive enamine formed through the C-N coupling reaction to undergo further intramolecular cyclization (Scheme 2). Herein, we reported a cascade copper-catalyzed intermolecular Ullmann-type C-N coupling/enamine condensation reaction for the synthesis of substituted quinolines starting from ortho-acylanilines and alkenyl iodides. This is the first report of Ullmann coupling reactions using sterically hindered aniline derivatives and vinyl

Received: November 18, 2014 Published: December 15, 2014

The Journal of Organic Chemistry

Scheme 2. Synthesis of Quinolines via C-N Coupling/Condensation from ortho-Acylanilines

halides as substrates to prepare quinoline derivatives, to the best of our knowledge.

The reaction of 2-aminobenzaldehyde (1a) with 2 equiv of (E)-1-(2-iodovinyl)benzene (2a) was screened to optimize reaction conditions, and the results are summarized in Table 1.

Table 1. Optimization of Reaction Conditions^a

entry	ligand	base	temperature (°C)	time (h)	yield (%) ^b
1	DMEDA	K_2CO_3	130	6	72
2	TMEDA	K_2CO_3	130	6	67
3	DMCHDA	K_2CO_3	130	6	89
4	1,10- phenanthroline	K_2CO_3	130	6	75
5	2,2'-dipyridyl	K_2CO_3	130	8	35
6	DL-proline	K_2CO_3	130	6	62
7	glycine	K_2CO_3	130	6	91
8	glycine	K_2CO_3	130	10	95
9	glycine	K_2CO_3	100	20	62
10 ^c	glycine	K_2CO_3	130	10	36
11	glycine	^t BuOK	130	16	35
12	glycine	Na_2CO_3	130	10	43

^aUnless otherwise noted, all reactions were carried out under N_2 atmosphere in 0.5 mmol scale with the ratio of 1a/2a = 1:2. ^bIsolated yield. ^cThe reaction was carried out under air.

Initially, our investigation began with an attempt of 1a, using 10 mol % of CuI as catalyst, 20 mol % of N,N'-dimethylethylenediamine (DMEDA) as ligand, and 2.0 equiv of K₂CO₃ as base in dimethylformamide (DMF) at 130 °C under N₂ atmosphere (entry 1). The desired quinoline derivative 3a could be isolated in 72% yield within 6 h. This result encouraged us to examine various common ligands, such as N,N,N',N'-tetramethylethylenediamine (TMEDA), N,N'-dimethyl-1,2-cyclohexanediamine (DMCHDA), 1,10-phenanthroline, 2,2'-dipyridyl, DLproline, and glycine, and the target product 3a was obtained in 35–91% yields (entries 2–7). To our delight, the glycine which is commercially available has the highest activity for this reaction (91% yield, entry 7). Then, the reaction conditions were further investigated, and the results showed that 10 h reaction time span, 130 °C reaction temperature, and nitrogen atmosphere were essential for this catalytic system (entries 7-10). The excellent yield (95%) of 3a could be achieved under these reaction conditions, with only 36% yield under ambient air (entry 8 vs 10). Finally, the effect of base was evaluated, and further studies showed that other bases such as Na2CO3 and ^tBuOK were less effective, affording 43 and 35% yields, respectively (entries 11 and 12).

With the standard reaction conditions (Table 1, entry 8), the substrate scope of the reaction by employing a variety of *ortho*-acylanilines 1 and alkenyl iodides 2 was explored. First, the screening of different structures of alkenyl iodides 2 with 2-

aminobenzaldehyde 1a is summarized in Table 2, entries 1–7. For aryl alkenyl iodides 2a–2d, the substrates with electron-

Table 2. Synthesis of Various Quinoline 3^a

entry	substrate	vinyliodo	product	time (h)	yield (%) b
1	CHO NH ₂	Ph 2a	Ph N 3a Me	10	95
	1a		3a Me		
2	1a	Me 2b		10	88
3	1a	MeO 2c	3b OMe	15	92
4	1a	CI 2d	N 3d	20	69
5	1a	Bu 2e	Bu N 3e	25	78
6	1a	Pr Pr	Pr N Pr	25	72
7 ^c	1a	S 2g	N S	20	57
8		HO 2a H ₂	MeO Ph	20	78
9	Br CH	29	Br Ph	15	84
10	Me NH ₂	2a	Me Ph	12	83
11	Ph NH ₂	2 a	JN JJ Ph	15	93

"Unless otherwise noted, all reactions were carried out under N_2 atmosphere in 0.5 mmol scale with the ratio of 1a/2a = 1:2. "Isolated yield. "The reaction was carried out at 160 °C in DMA.

donating substituents on the benzene ring offered higher yields (88 and 92%) compared with those with electron-withdrawing substituents on the benzene ring (69%) (entries 2 and 3 vs 4). For alkyl alkenyl iodides **2e** and **2f**, the reaction also proceeded well, and **3e** and **3f** were obtained in 72 and 78% yields, respectively (entries 5 and 6). Remarkably, when the temperature was increased to 160 °C in DMA, the heterocyclic iodides **2g** gave moderate yield (57%) of desired product **3g** (entry 7). Second, the different substituted *ortho*-acylanilines **1b–1e** were examined in this catalytic system, resulting in 78–93% yields of the desired quinolines (entries 8–11). Furthermore, 3,4-substituted quinolines **3j** and **3k** could be

smoothly accessed under the exact same conditions using *ortho*-aminophenyl ketones **1d** and **1e** as substrates in high yields (83 and 93%), of which the synthetic methods are not very sufficient (entries 10 and 11).^{5–7}

On the basis of the reported work, ¹¹ a plausible mechanism is proposed with model substrates **1a** and **2a** as outlined in Scheme 3. The process began with the ligand exchange with 2-

Scheme 3. Proposed Mechanism

aminobenzaldehyde 1a, affording copper-coordinated intermediate A in the presence of K_2CO_3 . Then, alkenyl iodide 2a reacts with intermediate A through oxidative addition, furnishing the intermediate C after reductive elimination. Intramolecular cyclization of the β -carbon of enamine C to acyl group forms intermediate D, which further undergoes aromatization to give the desired quinoline 3a.

In conclusion, we have developed an efficient procedure of the cascade copper-catalyzed C-N coupling/cyclization reaction to construct various substituted quinoline derivatives. This catalytic system, in which sterically hindered anilines and vinyl iodides were used in Ullmann coupling reactions, gave a variety of 3- or 3,4-substituted quinolines in good to excellent yields.

EXPERIMENTAL SECTION

High-resolution mass spectra were performed on a mass spectrometer with a TOF (for EI or ESI) or FT-ICR (for MALDI) analyzer.

Typical Procedure. To a solution of *ortho*-acylaniline 1 (0.5 mmol) in DMF (2.0 mL) were added alkenyl iodide 2 (1.0 mmol), copper(I) iodide (9.5 mg, 0.05 mmol), glycine (7.5 mg, 0.1 mmol), and $\rm K_2CO_3$ (138.2 mg, 1.0 mmol) at room temperature. Then, the mixture was slowly warmed to 130 °C and stirred for a corresponding time. After that, the mixture was quenched with deionized water, extracted with ethyl acetate, washed with brine, and dried over anhydrous $\rm Na_2SO_4$. The solvent was evaporated, and the residue was purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10/1) to afford product 3.

3-Phenylquinoline (3a): ¹² Yellow oil, 95% yield (98 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.59 (m, 4H), 7.70–7.74 (m, 3H), 7.87 (d, J = 7.6 Hz, 1H), 8.15 (d, J = 8.4 Hz, 1H), 8.29 (d, J = 2.0 Hz, 1H), 9.20 (d, J = 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 127.0, 127.4, 128.0, 128.1 (2C), 129.2, 129.4, 133.2, 133.8, 137.9, 147.4, 150.0.

3-(p-Tolyl)quinoline (3b):¹³ Light yellow solid, 88% yield (96 mg), mp 81–82 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.44 (s, 3H), 7.34 (d, J = 7.6 Hz, 2H), 7.57 (t, J = 7.6 Hz, 1H), 7.62 (d, J = 8.0 Hz, 2H), 7.71 (t, J = 7.2 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 8.13 (d, J = 8.4 Hz, 1H), 8.28 (d, J = 2.0 Hz, 1H), 9.18 (d, J = 2.0 Hz, 1H); 13 C NMR (100 MHz, CDCl₃) δ 21.1, 127.0, 127.3, 128.0, 128.1, 129.3 (2C), 130.0, 132.9, 133.8, 135.0, 138.1, 147.3, 150.0.

3-(4-Methoxyphenyl)quinoline (3c): 12 Light yellow solid, 92% yield (108 mg), mp 80–81 $^{\circ}$ C; 1 H NMR (400 MHz, CDCl₃) δ 3.85

(s, 3H), 7.01–7.06 (m, 2H), 7.53–7.56 (m, 1H), 7.61–7.70 (m, 3H), 7.82 (t, J = 7.2 Hz, 1H), 8.12 (d, J = 8.4 Hz, 1H), 8.20 (d, J = 5.6 Hz, 1H), 9.15 (s, 1H); 13 C NMR (100 MHz, CDCl₃) δ 55.3, 114.6, 126.9, 127.8, 128.1, 128.5, 129.0, 129.2, 130.2, 132.3, 133.4, 147.0, 149.8, 159.8.

3-(4-Chlorophenyl)quinoline (3d):¹³ Light yellow solid, 69% yield (82 mg), mp 149–150 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.0 Hz, 2H), 7.53–7.60 (m, 3H), 7.71 (t, J = 8.0 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 8.13 (d, J = 8.6 Hz, 1H), 8.21 (s, 1H), 9.11 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 127.1, 127.8, 128.0, 128.6, 129.2, 129.3, 129.6, 132.5, 133.1, 134.3, 136.2, 147.4, 149.4.

129.6, 132.5, 133.1, 134.3, 136.2, 147.4, 149.4. 3-Butylquinoline (3e): ¹⁴ Light yellow oil, 78% yield (72 mg); ¹H NMR (400 MHz, CDCl₃) δ 0.93 (t, J = 7.6 Hz, 3H), 1.34–1.40 (m, 2H), 1.62–1.68 (m, 2H), 2.74 (t, J = 7.6 Hz, 2H), 7.47 (t, J = 7.2 Hz, 1H), 7.61 (t, J = 7.2 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.85 (s, 1H), 8.06 (d, J = 8.6 Hz, 1H), 8.76 (d, J = 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 22.0, 32.7, 33.0, 126.4, 127.2, 128.1, 128.4, 129.1, 134.0, 135.3, 146.7, 152.1.

2,3-Dipropylquinoline (3f): Light yellow oil, 72% yield (76 mg); 1 H NMR (400 MHz, CDCl₃) δ 0.98–1.09 (m, 6H), 1.66–1.76 (m, 2H), 1.79–1.89 (m, 2H), 2.75 (t, J = 8.0 Hz, 2H), 2.95 (t, J = 8.0 Hz, 2H), 7.42 (t, J = 7.2 Hz, 1H), 7.59 (t, J = 7.8 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.81(s, 1H), 8.02 (d, J = 8.4 Hz, 1H); 13 C NMR (100 MHz, CDCl₃) δ 13.9, 14.2, 22.8, 23.4, 34.3, 37.7, 125.5, 126.9, 127.2, 128.3, 128.5, 133.9, 134.8, 146.5, 162.1; HRMS (EI) for C₁₅H₁₉N [M⁺] calcd 213.1517, found 213.1521.

Thieno[2,3-b]*quinoline* (**3g**): ¹⁵ Light yellow oil, 57% yield (52 mg);
¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 6.0 Hz, 1H), 7.52–7.58 (m, 2H), 7.72–7.77 (m, 1H), 7.95 (d, J = 8.0 Hz, 1H), 8.15–8.18 (m, 1H), 8.52 (s, 1H);
¹³C NMR (100 MHz, CDCl₃) δ 121.2, 125.5, 125.6, 128.3, 128.4, 128.5, 129.3, 130.1, 131.5, 146.7, 163.4.

125.6, 128.3, 128.4, 128.5, 129.3, 130.1, 131.5, 146.7, 163.4. *6-Methoxy-3-phenylquinoline (3h)*: ¹³ Light yellow solid, 78% yield (92 mg); ¹H NMR (400 MHz, CDCl₃) δ 3.96 (s, 3H), 7.14 (d, J = 2.4 Hz, 1H), 7.38 (dd, J = 2.4, 9.2 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.53 (t, J = 7.6 Hz, 2H), 7.71 (d, J = 7.6 Hz, 2H), 8.03 (d, J = 9.2 Hz, 1H), 8.21 (s, 1 H), 9.03 (d, J = 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 105.3, 122.3, 127.5, 128.1, 129.2, 129.2, 130.7, 132.2, 134.2, 138.1, 143.6, 147.5, 158.2.

6-Bromo-3-phenylquinoline (3i):¹³ Light yellow solid, 84% yield (119 mg), mp 114–115 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (t, J = 7.6 Hz, 1H), 7.53 (t, J = 8.0 Hz, 2H), 7.68–7.70 (m, 2H), 7.70 (dd, J = 2.0, 8.8 Hz, 1H), 7.98–8.02 (m, 2H), 8.18 (d, J = 2.4 Hz, 1H), 9.17 (d, J = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 120.9, 127.5, 128.5, 129.2, 129.3, 130.0, 131.0, 132.1, 132.8, 134.7, 137.4, 145.9, 150.4.

4-Methyl-3-phenylquinoline (3j): Light yellow solid, 83% yield (90 mg), mp 58–61 °C; $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) δ 2.50 (s, 3H), 7.25–7.38 (m, 5H), 7.46 (t, J = 7.6 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 8.70 (s, 1H); $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) δ 15.4, 124.1, 126.6, 127.5, 127.9, 128.4, 128.8, 129.9, 129.9, 134.3, 138.5, 140.5, 146.9, 151.5; HRMS (ESI) for C $_{16}\mathrm{H_{14}N}$ [M + H $^+$] calcd 220.1126, found 220.1123.

3,4-Diphenylquinoline (3k):¹⁶ Light yellow solid, 93% yield (130 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.17–7.24 (m, 7H), 7.33–7.35 (m, 3H), 7.47 (t, J = 7.6 Hz, 1H), 7.69–7.73 (m, 2H), 8.20 (d, J = 8.0 Hz, 1H), 9.01 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 126.6, 126.9, 127.1, 127.2, 127.7, 128.1, 128.2, 129.1, 129.5, 130.2, 130.5, 133.1, 136.3 138.1, 145.5, 147.6 151.9.

ASSOCIATED CONTENT

S Supporting Information

NMR spectra for all products. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: yyliu@chem.ecnu.edu.cn.

*E-mail: yzli@chem.ecnu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Natural Science Foundation of China (Grant No. 21272074) and Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) for financial support.

REFERENCES

- (1) Michael, J. P. Nat. Prod. Rep. 2008, 25, 166.
- (2) (a) Chen, S.; Chen, R.; He, M.; Pang, R.; Tan, Z.; Yang, M. Bioorg. Med. Chem. 2009, 17, 1948. (b) Lilienkampf, A.; Mao, J.; Wan, B.; Wang, Y.; Franzblau, S. G.; Kozikowski, A. P. J. Med. Chem. 2009, 52, 2109. (c) Gakhar, G.; Ohira, T.; Shi, A.; Hua, D. H.; Nguyen, T. A. Drug Dev. Res. 2008, 69, 526.
- (3) Jenekhe, S. A.; Lu, L.; Alam, M. M. Macromolecules 2001, 34, 7315.
- (4) (a) Zong, R.; Zhou, H.; Thummel, R. P. J. Org. Chem. 2008, 73, 4334. (b) Chan, B. K.; Ciufolini, M. A. J. Org. Chem. 2007, 72, 8489. (c) Wu, Y.-C.; Liu, L.; Li, H.-J.; Wang, D.; Chen, Y.-J. J. Org. Chem. 2006, 71, 6592. (d) Denmark, S. E.; Venkatraman, S. J. Org. Chem. 2006, 71, 1668. (e) Combes, A. Bull. Soc. Chim. Fr. 1883, 49, 89. (f) Friedlander, F. Ber. Dtsch. Chem. Ges. 1882, 15, 2572. (g) Skraup, Z. H. Ber. Dtsch. Chem. Ges. 1880, 13, 2086.
- (5) (a) Yan, R.; Liu, X.; Pan, C.; Zhou, X.; Li, X.; Kang, X.; Huang, G. Org. Lett. 2013, 15, 4876. (b) Tiwari, V. K.; Pawar, G. G.; Das, R.; Adhikary, A.; Kapur, M. Org. Lett. 2013, 15, 3310. (c) Zhang, Y.; Wang, M.; Li, P.; Wang, L. Org. Lett. 2012, 14, 2206. (d) Chen, Y.; Huang, J.; Hwang, T.-L.; Li, T.; Cui, S.; Chan, J.; Bio, M. Tetrahedron Lett. 2012, 53, 3237. (e) Mitamura, T.; Ogawa, A. J. Org. Chem. 2011, 76, 1163. (f) Monrad, R. N.; Madsen, R. Org. Biomol. Chem. 2011, 9, 610. (g) Horn, J.; Marsden, S. P.; Nelson, A.; House, D.; Weingarten, G. G. Org. Lett. 2008, 10, 4117. (h) Fan, J.; Wan, C.; Sun, G.; Wang, Z. J. Org. Chem. 2008, 73, 8608. (i) Gordillo, A.; de Jesús, E.; López-Mardomingo, C. Org. Lett. 2006, 8, 3517. (j) Korivi, R. P.; Cheng, C.-H. J. Org. Chem. 2006, 71, 7079. (k) Sangu, K.; Fuchibe, K.; Akiyama, T. Org. Lett. 2004, 6, 353. (1) Tagata, T.; Nishida, M. J. Org. Chem. 2003, 68, 9412. (m) Mongin, F.; Mojovic, L.; Guillamet, B.; Trécourt, F.; Quéguiner, G. J. Org. Chem. 2002, 67, 8991. (n) Amii, H.; Kishikawa, Y.; Uneyama, K. Org. Lett. 2001, 3, 1109. (o) Cho, C. S.; Oh, B. H.; Kim, J. S.; Kim, T.-J.; Shim, S. C. Chem. Commun. 2000, 1885.
- (6) (a) Xu, X.; Xu, X.; Li, H.; Xie, X.; Li, Y. Org. Lett. 2010, 12, 100. (b) Xu, X.; Liu, J.; Liang, L.; Li, H.; Li, Y. Adv. Synth. Catal. 2009, 351, 2599. (c) Li, H.; Yang, J.; Liu, Y.; Li, Y. J. Org. Chem. 2009, 74, 6797. (7) (a) Li, H.; Wang, C.; Huang, H.; Xu, X.; Li, Y. Tetrahedron Lett. 2011, 52, 1108. (b) Li, H.; Xu, X.; Yang, J.; Xie, X.; Huang, H.; Li, Y. Tetrahedron Lett. 2011, 52, 530.
- (8) For reviews, see: (a) Sambiagio, C.; Marsden, S. P.; Blacker, A. J.; McGowan, P. C. Chem. Soc. Rev. 2014, 43, 3525. (b) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2010, 1, 13. (c) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954.
- (9) (a) Li, E.; Xu, X.; Li, H.; Zhang, H.; Xu, X.; Yuan, X.; Li, Y. Tetrahedron 2009, 65, 8961. (b) Bao, W.; Liu, Y.; Lv, X. Synthesis 2008, 1911. (c) Martín, R.; Cuenca, A.; Buchwald, S. L. Org. Lett. 2007, 9, 5521. (d) He, G.; Wang, J.; Ma, D. Org. Lett. 2007, 9, 1367. (e) Rivero, M. R.; Buchwald, S. L. Org. Lett. 2007, 9, 973. (f) Yuan, X.; Xu, X.; Zhou, X.; Yuan, J.; Mai, L.; Li, Y. J. Org. Chem. 2007, 72, 1510. (g) Martín, R.; Rivero, M. R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2006, 45, 7079. (h) Trost, B. M.; Stiles, D. T. Org. Lett. 2005, 7, 2117. (i) Hu, T.; Li, C. Org. Lett. 2005, 7, 2035. (j) Pan, X.; Cai, Q.; Ma, D. Org. Lett. 2004, 6, 1809. (k) Coleman, R. S.; Liu, P.-H. Org. Lett. 2004, 6, 577. (l) Han, C.; Shen, R.; Su, S.; Porco, J. A., Jr. Org. Lett. 2004, 6, 27.
- (10) Liao, Q.; Zhang, L.; Wang, F.; Li, S.; Xi, C. Eur. J. Org. Chem. 2010, 5426.
- (11) Maiti, D.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 17423.

- (12) Ishikura, M.; Oda, I.; Terashima, M. Heterocycles 1985, 23, 2375.
- (13) Zhang, Y.; Wang, M.; Li, P.; Wang, L. Org. Lett. 2012, 14, 2206.
- (14) Mitamura, T.; Iwata, K.; Ogawa, A. Org. Lett. 2009, 11, 3422.
- (15) Rajendran, S. P.; Shanmugam, P. Org. Prep. Proced. Int. 1994, 26, 349
- (16) Martinez, R.; Ramon, D. J.; Yus, M. J. Org. Chem. 2008, 73, 9778.